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1. INTRODUCTION

Network Distributed Global Memory (NDGM) is implemented on top of a message passing layer

called Message Relay System (MRS). MRS presents a common interface for sending and receiving

messages over several different interfaces: Transport Control Protocol/Internet Protocol (TCP/IP), Shared

Memory Arena, Fifos, and "stdio" file pointers. NDGM sends messages via MRS to copy sections of local

memory to and from the global address space.

In addition to data transfer, NDGM provides mechanisms for program coordination. These include:

Semaphores: Allow one node exclusive access to some service

Memory Locks: Allow one node exclusive access to an area of memory

Barriers: Allow multiple nodes to block until all have reached a certain point

NDGM is implemented using a client-server model.

MRS allows processes on heterogeneous machines to communicate via message passing. Each node

in MRS can choose from several different physical transport mechanisms for its data. In Figure 1, nodes

on the same machine communicate via shared memory, while communication across machines is

accomplished via TCP/IP.

In addition to direct message passing, MRS allows nodes to send their messages indirectly. For

example, node I can communicate with node 3 by relaying its message through nodes 2 and 4. Also a

message may be broadcast to all known nodes. For example, node I could send the same message to

nodes 2, 3, and 4 by sending one broadcast message to node 2.

The maximum size of the message is determined when the node is created and is application defined.

It is also possible to directly access a node's data -space in order to minimize buffering.

As shown in Figure 2, an application might define some custom structure to pass as messages that

contain an opcode and some arguments. By assigning a structure pointer to the data area of the node, the



Machine 1 Machine 2
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Figure 1. Message relay system basics.

MRS Node #33 struct myjdata *sptr;

.. . ... .-| l . ... . - -" -

Figure 2 Messa . lrem llayn asenndedtra. iiU
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message data can be accessed as any arbitrary structure. In addition, the data does not have to be copied

into the MRS message buffer since it is already in the proper position. Such a codelette might look like

this:

typedef struct I
int opcode;
int arraysize;
float data[ 1];

) MY_STRUCT;

MYSTRUCT *sptr,

MRS_NODE *node;

/* Open the node */
node = mrs-open( ......

/* Assign sptr to the node's data
sptr = MRSNODEDATA(node);

/* Fill it up */
for(i=O ; i < 1000 ; i++)(

sptr->data[i] = 5.0 * i;
)

mrssend(node, sizeof(MY_STRUCT) + (1000 * sizeof(float)), (char *)sptr);

An MRS node, shown in Figure 3, provides a convenient abstraction that allows message passing to

be accomplished across several low-level mechanisms. Each node contains a unique ID, the hostuame on

which it was created, and the type of processor of that machine. The node contains function pointers to

routines that provide the actual data transport. Currently, transport is provided for. TCP/IP, a shared

memory queue mechanism, a generic memory buffer, and stdio file pointers such as Fifos.

The MRS node also points to a message area. This area can be provided by the user, or the MRS

library will allocate one via callocO. When a message is received, it contains the owner (originator) of

the message, the last node to handle the message, and an intended delivery path. If the receiving node

can connect to the destination node, the intended list is ignored and the message is delivered directly.
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Figure 3. Message relay system node information

There are also "broadcast" messages. These are messages that, once received, are broadcast te all

known nodes.

Since the node's data space can be assigned by the application, many nodes can share the same

memory area if the application knows that only one node will access the area at a time.

In Figure 4, for example, if an application needed to maintain 70 TCP/IP connections, each capable

of a one megabyte message, the application could assign the same data buffer to all of the nodes. As long

as data is copied out of the data buffer if needed for later use, it is not necessary to maintain a separate

buffer for each node.
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Node 1 Node 2 Node N

Data

Figure 4. MRS nodes sharing data area.

2. NETWORK DISTRIBUTED GLOBAL MEMORY (NDGM)

NDGM is a layer of routines on top of MRS that frees the application from much of the bookkeeping

of message passing. An application communicates with others by writing and reading data into a virtual

space. Even though file memory physically resides on several distributed machines, it is accessed as a

contiguous data buffer. The NDGM library manages the details of accessing this global memory.

The actual layout of the memory is described in a file that is given to the shell script ndgm start.

Each line in the file gives a hostname and a size in bytes. Lines that start with "#" are ignored:

# NDGM Description File
Node cpul.arl.army~mil 5000000
Node cpu2.arl.anrny.mil 20000000
Node cpu3.arl.army.mil 10000000

5



The shell script ndgm start will execute an rsh to each of these hosts and start a server program.

Once all of the servers have been started, they are all given the mapping of all of the servers in the

system. In this way, all of the servers know the assigned starting and end address of every other server.

This mapping is also written to the file ndgmcurrentnet.dat.

To use the virtual buffer created by ndgmstart, an application makes a call to ndgmjnitO. This reads

the system description from one of the servers and assigns a unique node ID. This ID stays constant for

the duration of the application. The system description defines mapping from the global address space

to local machine offsets.

Each of the servers started by ndgmstart waits for requests from clients to access its data. The server

is continuously executing a blocking read, so little CPU time is being consumed. If the server was started

by root, it automatically tries to lock its data into core memory so that it does not get swapped out by the

operation system. The server will not exit until it receives an NDGMTERM command from a client.

The system can be terminated by running the ndgm..stop shell script. All servers started up by

ndgm..start are sent an NDGMTERM command.

As in Figure 5, NDGM sets up an arbitrary size virtual memory array. This memory area is physically

distributed across several machines, but is accessed as one continuous memory block. There are routines

to put data into global memory and to get data from global memory. These routines access the data as

a contiguous block of bytes and not as any particular data type in much the same style as memcopyO.

This leaves the actual use of the area application defined.

The actual transport of the data is accomplished through MRS and is transparent to the application.

If the requested area spans several physical machines, the application need not be aware of its layout.

The access routines handle all of the necessary message passing.

The physical memory for each block of data is allocated from shared memory. This allows fast access

by an application, to a block that is on the same physical machine. Once again, the access routines take

care of detecting this situation.
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Figute 5. NDGM system

In addition to data access routines, NDGM contains synchronization mechanisms: memory locks,

semaphores, and barriers. These mechanisms are implemented in the NDGM server and do not use the

associated operating system mechanisms.

Memory locks allow an application to obtain an advisory lock on any section of the global memory.

These locks do not restrict access to the data but prevent other locks on the same memory area from being

obtained until the original lock is released.

Memory locks are always blocking. This means that a call to lock a section of memory will not return

until the entire section has been successfully locked or upon system error. The NDGM server maintains

a list of pending requests and grants memory locks when the resource becomes available.

Semaphores are implemented in much the same way as memory locks. Only one client can obtain

a specified semaphore at any time; all others are blocked until the current owner of the semaphore releases

it.
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Barriers ame used to coordinate ac ivity between several processes One proces sets an iruual barner

value. Each process that subsequently checks into the barrier will decrement that value When the barner

value reaches zero, all processes that have checked m are notified The barner value is then automatically

reset.

Access to global memory and synchronization mechanisms is accomplished through the following

routines:

imt
ndgm_irdt(ndgmnodeid, hostname, mrs_ho:,1_id, verbose)
int ndgmjnodejid
char *hostname Connect to Global Memory
int mrs_nodeid
int verbose

int
ndgm-put(address, source, length)
NDGM ADDR address
void *source Puts Data Into Global Memory
NDGMLENGTH length

int
ndgm-get(address, destination, length)
NDGM ADDR address
void *destination Gets Data From Global Memory
NDGM_LENGTH length

int
ndgmiock(address, length)
NDGMADDR address
NDGMLENGTH length Obtains Memory Lock

int
ndgmjunlock(address, length)
NDGMADDR address
NDGMLENGTH length Unlocks a Section of Global Memory

int
ndgmmsema-get(semajid)
NDGMKEY sema_id Obtain Semaphore

void
ndgm.semajrelease(semajid)
NDGM_KEY sema id Release Semaphore

8



ini
ndgm-basmer mit(bamerid, value)
NDGMKEY barrier-id
i*n value Initialize Barrier

int
ndgnbarrier wait(barrier-id)
NDGMKEY barrier id Check Into a Barrier

int
ndgm-dump(fidename, address, length)
char *filenam.e Dump Memory Image to
NDGMADDR address File (Parallel 1/0)
NDGM_LENGTH length

hit
ndgm-undump(filename, address, length)
char *filename Read Memory Image From
NDGMADDR address File (Parallel I/O)
NDGM_LENGTH length

3. DZONAL: AN APPLICATION

Dzonal is a distributed version of "The Zonal Code" by Dr. Nishee. Patel (Patel, Sturek, and Smith

1989). The purpose here is not to document the Dzonal code but to show how NDGM was used to

develop a distributed application and utilities.

Dzonal is a full three-dimensional, Navier-Stokes flow solver for supersonic flow. A copy of the

Dzonal executable is run on multiple machines and coordinated through the use of barriers. Unix shell

scripts are used to decompose the computational domain into fairly even chunks and to start the

application on the remote machine. There is no explicit message passing. Rather, all coordination is

accomplished through NDGM.

As an example, assume there is a geometry with two blocks (Figure 6). The first is 20x20x20 and

the second is 30x20x30. The two blocks overlap along the I dimension at I=[19,20] of block 1 and

I=[1,2] of block 2.

In addition, assume that there are five identical processors on which to distribute the application. Each

is a workstation with the same amount of main memory and disk space. Their hostnames are CPUI,

9



CPU2, CPU3, CPU4, and CPU5. With this arrangement, the layout (chosen by the Dzonal domain

decomposition utility) might look like Table 1.

Table I. Domain Decomposition With Identical Processors

CPUl 1 1 20 1 20 1 11

cpu2 1 1 20 1 20 10 20
cpu3 2 1 30 1 20 1 11
cpu4 2 1 30 1 20 10 21
CPUS 2 1 30 1 20 20 30

Notice that there is a I-K plane overlap among processors. This allows each processor to only

compute on interior points; inner-block boundaries are communicated each timestep.

With this layout, the exact amount of global memory is assigned to each processor that will allow its

interior points to be assigned to that processor's local memory. For example, CPU4 has K planes 10-21

of block 2. Plane 10 and 21, however, are interior to CPU3 and CPU5, so they are assigned to those

CPUs respectively. CPU4 will have K planes 11-20 in its local memory. With a 32-bit floating point

number, and assuming there is a need to store 50 values for each grid node (X, Y, 7, Temp. Press ...),

CPU4 would be assigned [10planes * 30(i) * 20(j) * 50values * 4 bytes) = 1.2 Megabytes of local

memory. This local memory would then be mapped to some global address (CPU I would start at 0). The

global addresses assigned to cpu4 will be called AddB2_K) I through AddB2_K20.

For each timestep, CPU4 will calculate values for its interior points and possibly any global boundary

conditions (i.e., a wall at J = I, outflow at I = 30, etc.) then write those values to global memory. Since

all of these values are in local memory, this is a fast-writirig operation. Once CPU4 has output its values,

it waits in a barrier. When all CPUs have checked into the barrier (they have all computed and output

their data) they can then read back the information for their boundaries. This includes the cross block

communication for the overlap of block I and block 2. While this communication scheme might get quite

10



Block #2 [30x20x30]

Blockco #1C202m20
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cc oco cacc oo,

Figure 6. Example Dzonal application.

complicated, if explicit message passing is used. it is quite straightforward when viewed as a single shared

memory.

Nodes that contain absolute boundaries then apply the appropriate boundary conditions and write that

data to global memory. When all nodes check into the final barrier, the application continues to the next

timestep. The local to global mapping of this application would look like Figure 7.

Since the NDGM servers are separate processes accessed by the Dzonal clients, other clients can access

the global memory while the solution is developing. This allows quite useful debugging utilities to be

developed. Two such utilities that have been developed are dz_look and dz_drawjplane. Dz~look allows

the user to look at any value in global memory by entering its UJK value. Dzdrawjplane will pull any

subsection of any plane (I, J, or K) out of global memory and send it to a network visualization program

called Bopyiew (Clarke 1994). A fully operational system might look like Figure 8.
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Figure 7. Dzonal DFocesses.

Global Memory Space

Dzonal_1- NN&lo Dz_draw plane
Dz~look Bop j'iew
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X -1.2
Y -3.55
Z = 45.66
Pressure =2116.55

'IJ > _ _ _ _ _ _ _

Figure 8. Operational system.
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4. CONCLUSIONS

NDGM allows applications to view a physically distributed group of processors as a shared memory

parallel machine. Although many factors determine communication speed such as CPU and network load.

the following numbers are good "ballpark" numbers for access times:

Transfer to local NDGM server 6 MBytes/second

Transfer to remote NDGM server 4 KBytes/second

These numbers are averages on a network of Silicon Graphics Indigo workstations run during peak

and nonpeak hours. They include different transfer lengths and all setup overhead. Your mileage may

vary.

Assuming these transfer rates are sufficient, NDGM can be used to develop and run parallel

applications on networks of relatively low-cost platforms. When the tinie spent in a batch queue is taken

into account, the total wall clock time may be comparable to larger more expensive platforms. The design

goal with NDGM is to minimize (dollars/grid node) while maintaining an acceptable (wall clock time/grid

node).
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